# SOAR: The Sky in Motion Life on the Tilted Teacup Ride 

Celestial Coordinates and the Day

Aileen A. O'Donoghue
Priest Associate Professor of Physics
ST. LAWRENCE UNITERSITY


## Where on Earth?

* Reference Points
(3) Poles
() Equator
(3) Prime Meridian
D) Greenwich:

England
4 Coordinates
(9) Latitude (9.) Longitude

## Where on Earth?

* Coordinates Canton, NY USA $50^{\circ} 29^{\prime} \mathrm{N}, 0^{\circ} 0^{\prime} \mathrm{E}$ (3) Latitude
D) Measured N \& S

2) From Equator to Póles
3) $0^{\circ}$ to $90^{\circ} \mathrm{N}$ \& S
(3) Longitude

DMeasure E \& W
D From Prime Meridian $\left(0^{\circ}\right)$ to $180^{\circ}$ E \& W

Santiago, Chile Cape Town, South Africa $33^{\circ} 36^{\prime \prime} \mathrm{S}, 70^{\circ} 40^{\prime} \mathrm{W} \quad 33^{\circ} 55^{\prime} .5,18^{\circ} 22^{\prime} \mathrm{E}$

## The Celestial Sphere

The view
from a small
planet on the edge of the
Orion arm of
the Milky
Way galaxy

## Reference Points

ACelestial Equator
© Projection of Earth's equator

* Celestial Poles
(3) Projections of Earth's poles
* Point of Aries
(3) Vernal Equinox
(3) Defines prime meridian (Celestial Greenwich)


## Celestial Coordinates

ARight Ascension
(3) PA or $\alpha$
(3) From prime meridian ( $0^{h}$ ) to
23 h 59 m 59 s
Eastward
\#Declination
(3) Dec or $\delta$
(3) From celestial equator $\left(0^{\circ}\right)$ to poles N \& S $90^{\circ}$

## Celestial Coordinates

Arcturus
$\star$ Right Ascension (7) Gelestial Longitude.
f Declination
Celestial Latitude

Vernal Equinox
Celestial Equator $0^{h} 0^{n} 0^{5} .0^{\circ} 0^{\prime} 0^{\prime \prime}$

Achernar (a Eri) $1 \mathrm{~h} 37^{\mathrm{m}} 50.9^{\mathrm{s}}$

SCP Rigel Kentarus (a Cen) $-57^{\circ} 14^{\prime} 12^{\prime \prime}$

$$
\begin{array}{r}
14^{\mathrm{h}} 399^{\mathrm{m}} 34.6^{\mathrm{s}} \\
-60^{\circ} 50^{\prime} 0^{\prime \prime}
\end{array}
$$

## Celestial Coordinates

## it Chet Raymo: 365 Starry Nights: October

Eanth observer in Nonth America looking up at Great Square of Pegasui's (aniasterism)

Degrees of Declination:

- Positive (N) $0^{\circ}$ to $+90^{\circ}$
- Negative (S) $0^{\circ}$ to - $90^{\circ}$



## Observers On Earth

If See different sky depending on Latitude - 5


Tilted Sky
\& Observers see sky "tilted" due to latitude
We see ourselves "on top" of the Earth, beneath the sky:

So we see sky motions. tilied


## Viewing the Sky

* Observers see celestial reference points at angles related to their latitude



## Sky Angles




## Altitude \& Azimuth

 At Position of an object in the sky(3) Azimuth = Angle from nonth through east (3) Altitude = Angle from horizon to object





## Question

to óbserver's
to north celestial pole


What's the observer's latitude?
a) $70^{\circ} \mathrm{N}$
b) $20 \% \mathrm{~N}$

## Question

to observer's
to north celestial pole


What's the observer's latitude? a). $60^{\circ} \mathrm{N}$
b) $30 \% \mathrm{~N}$

## Diurnal Circles

At Each
celestial object circles the observer each day it Observer sees part of each. circle.

## View of Observer



## View of Observers

 * Diurnal circles are parallel to. CE Stars rise and set at CE's angle from horizon

## Star Paths

## * Each travels a:diurnal circle

(3) Pontion of ditirnal circle above horizon determines time object is "up."

All paths parallet to celestial equator

Vega up for
19. hours

Summer sun up for 15 o hours

## Question

Which observer(s) would see the star travel on the diurnal circle shown?


## Question

Which observer(s) would see the star travel on the diurnal circle shown?


## N. Time of day

* Earth Rotates Once Each Day.
(7) $360^{\circ}$ with - respect to Earth-Sun line (3) All Earthlings ride along
$*$



## Sunrise, Sunset

* Everything in the sky (sun, moon, stars, etc.)
(3) Rises in the east
(3) Sets in the west each day Measuring Circles:

$$
\begin{gathered}
360^{\circ}=24 \mathrm{hr} \\
15^{\circ}=1 \mathrm{hr}
\end{gathered}
$$



Each hour, the sun moves 15 degrees in the sky
$1^{\circ}=4 \mathrm{~min}$ or $15^{\prime}=1 \mathrm{~min}$
Every 4 minutes, the sun moves

## Observer's View of the Day.

at. Sun rises in east,
moves 15 /hour from East to West transits at noon sets in west

## Standard Clock Time

It's 6 pm (sunset). fferent time

It's 9 pm.

It's
midnight.

It's 3 am .

It's 6 am (sunrise).

It's 3 pm .

It's
noon.

It's 9 am.

## Clock Time $=$ Position of Sol.

 A. Observers move through times:It's 9 pm.

It's
midnight.

It's 3 am .

It's 6 am (sunrise).

## Daylight Snvinn Time It's 7 pm

it Shifts times one hi (sunset). jsifo Explanation)
It's 10 pm .

It's 1 am .

It's 4 am .

It's 7 am (sunrise).

## Clock Time

## Time Zónes: 24, roughly $15^{\circ}$ apart

$$
6 \mathrm{pm}^{-5 \mathrm{pm}} 4 \mathrm{pm}
$$



1 pm 12 pm



## Coordinated Universal Time

* UTC (UT or Zulu):

Time at Greenwich
) no Daylight saving

* Conversión

(3) EST (Eastern Standand Tine) = UTC - 5 hr 2) eg. 2pm (14:00) EST = 19:00 UT
(3) EDT (Eastern Daylight Time) = UTC - 4 hr D eg. 2pm (14:00).EDT = 18:00 UT


## Solar Time vs. Clock Time.

## * Solar time varies across time zones

Time:Zone's Solar Noon:


## Solar Time vs. Clock Time.

## * Solar time varies across time zones

Time'Zone's Solar Noon
Clock Noon FOR ALL


## Question

Portland, Maine, $70^{\circ} \mathrm{W}$ is in the Eastern Time Zone (center: $75^{\circ} \mathrm{W}$ ). Solar noon occurs at (Degrees) $\times(4$ minutes $/$ degree $)=(5) \times(4)=20$ minutes early Solar noon in Portland at 11:40 am


## Solar Time vs. Clock Time.

## * Solar time varies across time zones

Time:Zone's Solar Noon:
Clock Noon FOR ALL


## Question

Yuma, $A Z, 115^{\circ} \mathrm{W}$ is in the Mountain Time Zone (center:105 W). Solar noon occurs at

$$
\text { a) } 11: 20 \mathrm{am}, \text { b) } 11: 40 \cdot \mathrm{am}, \text { c) } 12: 20 \mathrm{pm}, \text { d) } 12: 40 \mathrm{pm}
$$

(Degrees) $\times(4$ minutes $/$ degree $)=(10) \times(4)=40$ minutes late


## Celestial Navigation

$\star$ Finding Latitude \& Longitude from (3. Altitude of Polaris (NCP)
(3) Transit time of star

D Looked up in an ephemeris (eg: Field Guide)

- to observer's
to nonth
celestial
$\therefore$ pole


Observer at $20^{\circ} \mathrm{N}$

## Star Transit Time

## Gives position of star with respect to the sun

eg. Look up transit time of Aldebaran on December 15

Standard Time

Aldebaran's Position on 12/15 nearly opposite Sol!

6 pm 5 pm
4 pm
3 pm
2 pm
1 pm
12 pm

3 am
9 am

6 am

## Star Transit Time

## Gives position of star with respect to the sun

eg. Look up transit time of Vega on July 15 (Daylight time)
\$taylitghitd Time

Vega's
Position on $7 / 15$ nearly opposite Sol!
${ }^{5}$ pm
5 pm
3 pm
8 pm


## Celestial Navigation

 * Difference between observed and expected transit times gives longitudeObserver watches star transit.
Clock is set to some time zone. Observed transit time disagrees with ephemeris.

Star's Transit


Longitude difference from clock's time zone center = (Time difference) $\times\left(15^{\circ} /\right.$ hour $)$


## Celestial Navigation

 $\star$ Example: Transit of Deneb on Augusf 1 ©olorato DayObserver sees Deneb transit at 11 pm EDT
Looks up transit time in FG
At 1 am Deneb will transit TZ

On 8/1 Deneb transits at 1 am


Longitude difference from clock's time zone center = ( 2 hours) $\times\left(15^{\circ} /\right.$ hour $)=30^{\circ}$ Eas $\dagger$

Observer's Longitude $=$
TZ center - Latitude difference $=$ $75^{\circ} \mathrm{W}-30^{\circ}=45^{\circ} \mathrm{W}$


